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A series of numerical experiments is performed to investigate the breaking of obliquely
incident internal waves propagating towards a bottom slope. The case of critical
reflection is considered, where the angle between the wave group velocity vector
and the horizontal matches the bottom slope angle. The flow evolution is found
to be significantly different from the evolution observed previously in simulations
of normally incident waves. The divergence of the Reynolds stress in the breaking
zone causes a strong along-slope mean current, which changes the flow structure
dramatically. The wave does not penetrate the current but breaks down at its upper
surface as the result of a critical layer interaction. A continuously broadening mean
along-slope current with an approximately constant velocity is produced. We propose
a simple model of the process based on the momentum conservation law and the
radiation stress concept. The model predictions are verified against the numerical
results and are used to evaluate the possible strength of along-slope currents generated
by this process in the ocean.

1. Introduction
Understanding the mechanism of diapycnal (vertical) mixing in the ocean has

been a long-time challenge for physical oceanography. In nature, vertical mixing
is inhibited by the ocean’s stable stratification. Munk (1966) showed that a basin-
averaged vertical eddy diffusivity of roughly κ = 10−4 m2 s−1 must exist to balance
the effects of upwelling and downward diffusion. Field studies, however, have failed
to observe such large vertical diffusivities in the ocean interior, falling short by
approximately an order of magnitude (see e.g. Ledwell, Watson & Law 1993 and
Polzin et al. 1997). The conclusion from the field experiments is that 80–90% of
the vertical mixing is not taking place in the ocean interior. Instead, the mixing is
expected to occur near boundaries.

Field experiments by Eriksen (1985, 1998) have suggested that the oceanic inter-
nal wave field can provide sufficient energy to activate strong mixing near sloping
boundaries, which can in turn account for a significant portion of the overall oceanic
vertical mixing. One mechanism by which this may occur is the breaking of internal
gravity waves, as they reflect off the continental shelf or other sloping boundaries
near islands or seamounts. When an internal wave of frequency ω propagating
in a uniformly stratified environment reflects from a larger-scale, sloping bound-
ary, its angle of propagation with respect to the horizontal is preserved (Phillips
1977). The wave frequency, ω, depends on the inclination, θ, of the wavenumber
vector to the horizontal and the background density stratification according to the
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dispersion relation

ω = N cos θ, (1)

where N is the buoyancy frequency defined by

N ≡
(
− g

ρ0

∂ρ̄

∂z

)1/2

, (2)

∂ρ̄(z)/∂z and ρ0 being the background density gradient and the reference density.
The reflection from a sloping boundary can lead to an increase in the energy

density of the wave, as the energy in the oncoming wave is concentrated into a more
narrow ray tube upon reflection. The situation probably most effective for boundary
mixing arises when an oncoming wave reflects from a bottom slope α that nearly
matches the angle of wave propagation π/2 − θ. In this case linear theory suggests
that a small-amplitude oncoming wave may be reflected with large amplitude, thus
exhibiting nonlinear behaviour and possibly wave breaking and turbulence. The
flux of reflected energy is transferred to shorter wavelength and the group velocity
decreases. At the critical condition, π/2−θ = α, linear wave theory predicts a reflected
wave of infinite amplitude, infinitesimal wavelength, and zero group velocity, leading
to the trapping of oncoming wave energy in the boundary region. In such a case,
nonlinearities and turbulence come into play. This phenomenon was considered in
laboratory experiments by Cacchione & Wunsch (1974), Ivey & Nokes (1989), and
De Silva, Imberger & Ivey (1997).

The nonlinear dynamics of the reflection of an internal wave propagating at the
critical angle was the subject of extensive numerical experiments by Slinn & Riley
(1996, 1998a, b, 2001). A wave train of stationary amplitude was generated in such a
way that the wave approached the bottom in the normal plane. The numerical simu-
lations provided firm evidence that the wave breaking near the boundary can generate
intensive turbulent motions. The flow was found to depend on the bottom slope. In the
case of steep slope (∼ 30◦), it developed a quasi-steady turbulent bore moving upslope
at the phase speed of the wave. For shallow slopes (∼ 5◦), which are much more com-
mon in the ocean, the wave breakdown led to an intermittently turbulent boundary
flow with the time period of about 1.3 wave periods. The energy of the oncoming wave
was distributed in an approximately constant proportion so that about 35% went into
irreversible mixing, 55% was dissipated to heat, and 10% reflected from the bottom.

The numerical simulations by Slinn & Riley concerned an idealized situation in
the sense that only normally incident waves were considered. Field observations, of
course, contain waves that approach the slope from a full spectrum of incident angles.
In this paper, we shall consider oblique waves and find drastic changes in the flow
structure.

The first concept we need to invoke here is that of an along-slope current generated
by an obliquely oncoming wave. We use the terminology ‘along-slope’ to mean
a velocity component along the slope, as opposed to an up-slope or down-slope
current (see figure 1 for an illustration). Aspects of the generation of a mean current
by obliquely incident internal waves have been predicted by Hogg (1971), Wunsh
(1973) and Thorpe (1997, 1999), based on different physical mechanisms. Wunsh
(1973) explained the slow surface drift observed in large lakes by the Lagrange drift
generated by a second-order interaction of internal waves. Second-order effects were
also considered by Thorpe (1997). It was shown that a resonant interaction of an
obliquely incident internal wave with its reflected counterpart can generate a Stokes
drift in the along-slope direction.
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Figure 1. Model geometry: (a) wavenumber vector (k) and group velocity (C g) of the wave; (b) the
bottom slope, computational domain, and the coordinate systems used in the simulations. θ and γ
are the inclination and oblique angles; α is the slope angle; ξ-axis is up-slope and y-axis is in the
along-slope direction.

In the studies by Hogg (1971) and Thorpe (1999), the along-slope current generation
was attributed to the divergence of the Reynolds stress caused by wave breakdown
in increasingly shallow water (Hogg) or by imperfect viscous reflection at the bottom
slope (Thorpe). An analogous process occurs for surface wave breaking at the shore
when waves approach the beach at an oblique angle. An along-shore current (see
Slinn et al. 1998; Slinn, Allen & Holman 2000) can develop in the surf zone from
the flux of surface wave momentum. This process has also been explained using the
concept of radiation stress (Bowen 1969; Longuet-Higgins 1970). Simply stated, if
a reflected wave train does not carry as much momentum away from a boundary
as is carried toward the boundary by an incident wave train, then there will be a
compensating flux of momentum into a mean flow.

An experimental verification of the possibility of current generation by internal
gravity waves approaching a sloping boundary at an oblique angle can be found in
Dunkerton, Delisi & Lelong (1998). Despite limitations imposed by the size of the
experimental tank, generation of along-slope currents was clearly observed.

A second well-established concept important for our analysis is that of the instability
and breakdown of an internal wave near a critical layer. The notion of a critical layer
refers to an internal wave propagating through an ambient shear flow. Consider the
situation when the mean flow velocity U(z) grows with the transverse coordinate z
and the wave has a non-zero z-component of the group velocity so it propagates
across the mean current. The critical layer can be defined as a layer z = zc at which
the growing U(z) becomes equal to the component ω/ki of the trace speed in the
direction parallel to the mean flow so that the intrinsic frequency ω − kiU tends
toward zero.

Inviscid studies using the WKB approximation (Bretherton 1966) and the linear
approximation (Booker & Bretherton 1967) revealed that only a small part (dependent
on the local Richardson number) of the wave energy penetrates the critical layer.
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A much larger part is absorbed by the ambient current. The asymptotic (WKB
and linear) studies failed to describe the singular behaviour of the internal wave
approaching the critical level. They pointed out, however, unambiguously that, as the
z-component of the group velocity and the wavelength tend to zero with z → zc, and
the energy density of the wave packet grows as (z− zc)−1, the wave becomes unstable
and should break in a turbulent manner. It should be stressed that, according to this
scenario, the wave breakdown can occur before the actual critical layer condition is
fulfilled provided the mean flow velocity grows to close to the trace speed and the
wave energy is large enough.

Since then, the transfer of the internal wave energy into small-scale turbulence
during the critical level interactions has been held responsible for a considerable
part of the turbulent mixing in the ocean interior. Internal wave breaking was
studied using laboratory experiments (Thorpe 1981; Koop 1981; Koop & McGee
1986) and numerical analysis (Winters & Riley 1992; Winters & D’Asaro 1994). (We
mentioned only the three-dimensional numerical simulations because of the decisive
importance of three-dimensionality for a correct description of the wave breaking
process demonstrated in these studies.) The case of a wave propagating normally to
the mean current was considered. It was found that approximately one third of the
wave energy went into the increase of the kinetic energy of the mean flow, one third
was reflected, and one third was dissipated in the turbulent flow developing at the
critical layer.

Combining the ideas of along-slope current generation by an obliquely incident
internal wave and wave breaking at the critical layer, it is straightforward to assume
the possibility of the following hypothetical scenario. Consider an internal wave
propagating towards the bottom slope over a long period of time and assume that
the propagation is at the critical angle, π/2− θ = α. Since no reflection occurs in this
case, the linear momentum continuously transferred by the wave is trapped in the
boundary region. This leads to the generation and growth of an along-slope current.
As soon as the magnitude of the current velocity approaches the trace speed in the
along-slope direction, wave breaking at a critical layer replaces the bottom breaking.
It does not change the fact that a part of the wave linear momentum is transferred to
the mean current. A consequence is the growth in the current strength and moving of
the wave breaking layer away from the bottom. In such a manner the along-slope flow
increases as long as the oncoming wave continues to support it with its momentum
flux.

The numerical experiments presented in this paper confirm that this scenario is,
indeed, realistic. After discussing the formulation of the problem and numerical
method in § 2 we propose a simple theoretical model of the process in § 3. The results
of the numerical experiments are presented in § 4. In § 5, we evaluate the possibility
of mean current generation in real oceanic flows. Concluding remarks and general
discussion are given in § 6.

2. Numerical model
In this section, we give a brief account of the model used in the computations.

More details can be found in Slinn & Riley (1998b).

2.1. Governing equations

We adopt the Boussinesq approximation for flows of stratified fluid. In a coordinate
system with the z-axis in the vertical direction, the dimensionless equations of fluid
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motion are

∇ · u = 0, (3)

∂u

∂t
+ (u · ∇)u = −∇p− Ri ezρ+

1

Re
∇2u+ Fu, (4)

∂ρ

∂t
+ u · ∇ρ− u · ez =

1

Pe
∇2ρ+ Fρ. (5)

Here u is the velocity field, ρ and p are the perturbations of the density and pressure
fields, ez is the unit vector in the direction opposing gravity, and Fu, Fρ are the forcing
terms discussed below. The background density and pressure distributions are

ρ̃0 +
dρ̄

dz
z and p̃0 − ρ̃0gz, (6)

where the vertical gradient dρ̄/dz due to the gradients of salinity and temperature is
assumed to be constant and the dimensional reference density field ρ̃0 is in hydrostatic
balance with the mean pressure gradient.

The equations (3)–(5) are non-dimensionalized using the parameters of the incident
wave and background stratification as scales. In particular, we use the wavelength λζ
in the direction normal to the slope as the length scale and λζ |dρ̄/dz| as the density
scale. The non-dimensional total density field is then expressed as

ρt = ρ0 − z + ρ(x, y, z, t). (7)

A peculiarity of our formulation is that the natural choice for the velocity scale,
the amplitude A of the velocity oscillations in the wave, depends on the details
of forcing in a complex fashion and cannot be reliably determined prior to the
simulations. Therefore, we apply an arbitrary chosen velocity scale U = 0.1 m s−1 and
the corresponding time scale λζ/U in every numerical run.

The non-dimensional parameters are the Reynolds, Richardson, and Péclet numbers
defined according to

Re ≡ Uλζ

ν
, Ri ≡

(
Nλζ

U

)2

, Pe ≡ Uλζ

κ
, (8)

where ν and κ are the kinematic viscosity and the diffusivity of density fluctuations,
and N is the buoyancy frequency defined by (2). The ‘real’ parameters (8) are evaluated
after the calculations using the computed value of the wave amplitude A instead of U.

Typically for ocean water, κ is several orders of magnitude smaller than ν. In
turbulent flows, however, both density and momentum diffusion are dominated by
transport due to small-scale velocity fluctuations, which are subject to the subgrid-
scale modelling in our calculations. Therefore, we follow the approach commonly used
in simulation of turbulent convection and scalar transfer and assume that Pe = Re.

2.2. Model geometry and forcing

The geometry of the model is illustrated in figure 1. The orientation of the oncoming
wave is determined using the inclination θ of the wavenumber vector k to the
horizontal and the oblique angle γ (see figure 1a).

In non-dimensional variables, the components of the trace speed are defined ac-
cording to

Ctr
x ≡ ω

kx
, Ctr

y ≡ ω

ky
, Ctr

z ≡ ω

kz
, (9)
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where ω is the wave frequency determined through the non-dimensional form of the
dispersion relation (1)

ω2 = Ri
k2
x + k2

y

k2
.

Sometimes (see e.g. Thorpe 1997, 1999 or Winters & D’Asaro 1994) expressions (9)
are called phase speed or phase velocity of the wave. We prefer the name ‘trace speed’
to distinguish (9) from the real phase velocity vector (see Phillips 1977)

Cph ≡
∣∣∣ω
k

∣∣∣ k
k
. (10)

The group velocity vector defined as

Cg ≡ ∇kω(k) (11)

is normal to k (Phillips 1977).
It is advantageous to perform the calculations in the coordinate system rotated

about the along-slope y-axis by the angle of the slope α. The rotated system (ξ, y, ζ)
has the ξ-axis directed up-slope and the ζ-axis perpendicular to the slope (figure 1b).
The most important advantage is that we can use a rectangular computational
domain and apply the periodic boundary conditions in the ξ- and y-directions. Note
that the background density and pressure fields (6), which are inhomogeneous in the
ξ-direction, are subtracted from the total fields in the equations (3)–(5).

The oncoming wave is continuously generated from inside the computational do-
main utilizing spatially localized forcing terms. The two-dimensional forcing method
of Slinn & Riley (1998b) has been generalized by P. N. Lombard & J. J. Riley
(1998, private communication) to include the three-dimensional case of oblique wave
incidence. In the rotated coordinate system

Fu =
C

k2
ξc− kζkξs+ k2

yc

[F(ζ)(k2
ys− kξkζc+ k2

ζ s) cosΦ− F ′(ζ)(kξc− kζs) sinΦ],

Fv = − C

k2
ξc− kζkξs+ k2

yc
[F(ζ)(kζkyc+ kξkys) cosΦ+ F

′
(ζ)kyc sinΦ],

Fw = CF(ζ) cosΦ,

Fρ = − C[(kξc− kζs)2 + k2
y]

ω(k2
ξc− kζkξs+ k2

yc)
[F(ζ) sinφ+ F

′
(ζ)s(kξc− kζs) cosϕ].



(12)

Here c and s stand for cos α and sin α, respectively, C is the forcing amplitude,
k = (kξ, ky, kζ) is the wavenumber vector, u = (u, v, w) is the velocity in (ξ, y, ζ)
directions, Φ = kξξ + kyy + kζζ + ωt is the phase of the wave, and

ω2 = Ri
(kξc− kζs)2 + k2

y

k2
ξ + k2

y + k2
ζ

.

The forcing localization function is

F(ζ) = exp [−b(ζ − ζf)2], 0 6 ζ 6 Lζ,

where Lζ is the height of the computational domain. F
′
(ζ) is the ζ-derivative of F(ζ).

The parameters ζf and b are chosen in such a way as to localize the forcing region in
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Figure 2. (a) Forcing localization function F(ζ); (b) and (c) calculations for Case 1 (see § 4).
ξ, y-averaged total energy E(ζ, t) = (1/2)〈u2 + v2 + w2 + Riρ2〉 and flux of y-momentum in the
negative ζ-direction Σ(ζ, t) = −〈wv〉 are shown as functions of ζ at different t. Dotted lines are the
exact solutions for viscous decay of a monochromatic wave, µ = −2k2Re−1C−1

gζ .

the upper half of the domain and having the width exceeding the wavelength in the
ζ-direction, λζ (cf. figure 2a). It was shown by Slinn & Riley (1998b) and confirmed
by our calculations that the forcing produces a nearly monochromatic, time-uniform
wave.

2.3. Boundary conditions

The boundary conditions on the lateral boundaries of the computational domain are
those of periodicity in the ξ- and y-directions. At the bottom, a no-slip condition on
the velocity is applied. For the density field, we employ a zero-flux boundary condition

∂ρt

∂ζ

∣∣∣∣
ζ=0

= 0.
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Substituting the expression (7) for the total density we obtain

∂ρ

∂ζ

∣∣∣∣
ζ=0

= cos α. (13)

The flow above the forcing region is of minimal interest in the present study. The
only problem to is wave reflection from the upper boundary, which could contaminate
the computed results. Following Slinn & Riley (1998b) we apply the Rayleigh damping
sponge layer (Durran et al. 1993) at the top of the computational domain. This layer
occupies the upper 13 grid points (∼ 0.8λζ in height) and absorbs the energy of
upward propagating waves with minimum reflection.

2.4. Numerical method and subgrid-scale filtering

The numerical method is reported in full detail by Slinn & Riley (1998b). Only a cur-
sory description is given here. We employ the fourth-order compact Padé scheme for
spatial discretization and the third-order Adams–Bashforth time-stepping technique.
A computational grid of variable density is used, grid points being clustered near the
bottom.

Additional artificial numerical dissipation in the form of hyperviscosity terms µ∇6u,
µ∇6ρ is included into the model. The numerical approximation of these terms is based
on the compact filtering technique proposed by Lele (1992). The hyperviscosity fil-
tering is frequently used in the simulation of geophysical flows as a subgrid-scale
LES model (see e.g. Lesieur 1987). The process of the internal wave breakdown is
not driven by the motions at dissipative scales. Therefore, in our moderate Reynolds
number simulations, where the filtered energy is only a small part of the total dissi-
pation (see discussion of figure 9a in the Appendix), the presence of the hyperviscous
filter does not have a considerable impact on the large-scale properties of the flow.

2.5. Energy balance

The volume-averaged terms of the energy balance equations are used to analyse
the results of the calculations. Following Winters et al. (1995) we define the kinetic,
potential, and total energies as

KE ≡ 1

V

∫
V

1

2
(u2 + v2 + w2)dV , (14)

PE ≡ 1

V

∫
V

1

2
Ri ρ2dV , (15)

TE ≡ KE + PE. (16)

The balance equations are

∂

∂t
KE =

1

V

∫
V

[Bf + ε+ FKE +WKE]dV

+(LξLy)
−1

∫ Lξ

0

∫ Ly

0

[
1
2
wKE + w p

] |ζ=Lζdξdy, (17)

∂

∂t
PE =

1

V

∫
V

[−Bf + χ+ FPE +WPE]dV

+(LξLy)
−1

∫ Lξ

0

∫ Ly

0

[
1
2
w PE

] |ζ=Lζdξdy, (18)
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where ε and χ are the rates of dissipation of kinetic and potential energy occurring at
the resolved scales, FKE and FPE are the rates of dissipation by the filter, Bf ≡ Ri ρ u·ez
is the buoyancy flux, and WKE , WPE are the work input by the forcing mechanism. A
negligibly small portion of kinetic energy is also removed in the process of maintaining
a zero mean along-slope flow in the forcing region. The surface integral terms in (17)
and (18) represent the outward energy flux into the Rayleigh damping sponge layer
near the upper boundary of the computational domain. Exact definition of the terms
in (17) and (18) and the derivation of the equations can be found in Slinn & Riley
(1998b).

3. Radiation stress model
We postpone the discussion of the numerical experiments until § 4 in order to

introduce here a simple model for the along-slope current generation. The model will
later be used to interpret the results of calculations.

3.1. Radiation stress

The derivation is based on the conservation of momentum and on the concept of the
radiation stress introduced by Longuet-Higgins & Stewart (1964) for surface waves.
The notion of the radiation stress is equivalent to the excess flux of momentum
created by a propagating wave.

Let us consider a monochromatic internal wave, which is an exact solution to the
inviscid, non-diffusive version of (3)–(5) outside the forcing region (Phillips 1977)

(ux, uy) = A(νx, νy) sin θ cosΦ,

uz = −A cos θ cosΦ,

ρ = Aω−1 cos θ sinΦ,

p = A|Cph| tan θ cosΦ.

 (19)

The Cartesian coordinates (x, y, z) (see figure 1a) are used in (19); (ux, uy, uz) stand
for the velocity components, Φ = kxx+ kyy + kzz − ωt is the phase of the wave, and
νx = kx(k

2
x + k2

y)
−1/2 and νy = ky(k

2
x + k2

y)
−1/2 are the components of the unit vector

parallel to the horizontal projection of the wavenumber vector k = (kx, ky, kz). The
wave amplitude and frequency are given by A and ω and the wave orientation can be
defined through the inclination angle θ and the oblique angle γ = cos−1 νx = sin−1 νy .

The primary interest of our analysis is in the mean flux of momentum towards
the bottom slope produced by the wave (19). Therefore, we rewrite the equations of
motion (3)–(5) in the rotated coordinate system (ξ, y, ζ) and take the average in the
plane (ξ, y) parallel to the slope. Taking advantage of the flow homogeneity in this
plane (periodic boundary conditions applied in § 2.3) we obtain the equations for the
mean velocity components and density fluctuations. The mean currents in the ξ- and
ζ-directions are opposed by the vertical gradient of background density and should
be weak. For the mean along-slope current, hereafter denoted as V (ζ, t), we have

∂

∂t
V (ζ, t) =

∂

∂ζ
Σ(ζ, t) +

1

Re

∂2V

∂ζ2
, (20)

where

−Σ(ζ, t) ≡ 〈vw〉 (21)

is the y, ζ-component of the Reynolds stress, 〈 〉 standing for the averaging in the
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(ξ, y)-plane. Σ(ζ, t) is an analogue of the radiation stress used by Longuet-Higgins &
Stewart (1964) and Slinn et al. (1998, 2000) for the surface waves. It has the obvious
physical meaning of the averaged amount of the y-component of the momentum
transported by the wave in the direction of negative ζ.

In a freely propagating inviscid, non-diffusive wave (19) the momentum flux Σ
is constant. Transforming the components of the velocity vector into the rotated
coordinate system, substituting into (21) and taking the average one obtains

Σ = Σ0 = 1
2
A2[cos γ sin θ sin α+ cos θ cos α] sin γ sin θ. (22)

The same formula with a slightly different definition of the wave amplitude A was
given by Thorpe (1999). At critical reflection θ = π/2− α, (22) becomes

Σ0 = 1
4
A2 cos α sin 2α sin γ[cos γ + 1]. (23)

If, for some reason, the solution (19) ceases to be correct, Σ may become
ζ-dependent, which results in generation of the along-slope current V in accor-
dance to (20). Three possible reasons encountered in our simulations are the transient
effects near the propagating wave front, decay of the wave due to viscous and diffusive
effects, and its breakdown at the bottom or at the critical layer. We consider them in
turn.

3.2. Current generation near the wave front and due to viscous and diffusive decay

In addition to the internal wave breakdown considered in this paper, two mechanisms
of the along-slope current generation were encountered in our numerical experiments.
They are briefly discussed in this Section. While not having counterparts in the
real ocean flows of interest, these mechanisms could contaminate the results of
the experiments. Therefore, every precaution was taken to exclude their impact. In
particular, the mean along-slope velocity 〈v〉 was subtracted from the velocity field
during the initial, transient phase of each experiment. During the second phase, this
procedure was applied in the upper part of the computational domain, while mean
currents were allowed to evolve in the lower part, at approximately ζ < 0.4Lζ (see
§ 4.1 for more details).

If not compensated for, strong along-slope currents were found to be generated
around the front of the wave propagating in the negative ζ-direction. This happened
during the initial phase of the numerical experiments before the wave reached the
bottom slope. The obvious explanation is the strong ζ-gradient of the Reynolds stress
component Σ, which has to change, in front of the wave, from zero to a finite value
Σ0 characteristic of the wave.

A similar mechanism was responsible for wave generation occurring in the forcing
region. Here another ζ-gradient of Σ exists due to the growth of the wave as it
passes through the forcing zone. If left uncompensated this gradient would produce
an along-slope current in the direction opposite to the current produced at the wave
front.

Even after the wave had reached the bottom slope and a statistically steady incident
wave train was established, mean current was generated through the mechanism of
viscous decay of the wave. In the presence of viscous dissipation and diffusion, the
non-dimensional version of the dispersion relation (1) changes to (Slinn 1995)

ω = ωr + iωi,

ωr = Ri 1/2 cos θ − 1
2
k[Pe−1 − Re−1]1/2, (24)
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ωi = − 1
2
k2[Pe−1 + Re−1]. (25)

In the case of Pe = Re considered in this paper, (24) reduces to the inviscid
dispersion law (1), while (25) gives the viscous decay of the amplitude of the solution
(19) according to

A(t) = A(t0) exp [−k2Re−1(t− t0)]. (26)

We now consider a steady wave train produced by the forcing localized in ζ but
homogeneous in the ξ- and y-directions. For quantities averaged in ξ and y, the time
decay (26) can be replaced by the spatial decay

A(ζ) = A(ζ0) exp [−k2Re−1C−1
gζ (ζ − ζ0)]. (27)

Here, Cgζ is the ζ-component of the group velocity. It is negative for a wave propa-
gating toward the bottom. For second-order properties such as kinetic and potential
energies or the flux of momentum Σ we have

Σ(ζ) = Σ(ζ0) exp [−2k2Re−1C−1
gζ (ζ − ζ0)]. (28)

As discussed in § 4, the calculated waves propagate in full agreement with the
decay law (28). Moreover, since the calculations are performed at moderate Reynolds
number the decay plays an essential part in the solution. In particular, according to
(20), the divergence of momentum flux generates a mean current, which can be fairly
strong in certain cases. This phenomenon should be considered as unphysical for the
simple reason that the Reynolds number for real ocean internal waves is about 108 to
109 (see e.g. Roberts 1975 for field measurement data), which is 5 orders of magnitude
larger than in our simulations.

3.3. Current generation due to wave breakdown

Unlike the viscous decay, the mechanism of current generation discussed in this
Section may exist at any Reynolds number and is expected to play an important part
in real ocean flows.

Let us assume that the wave breaks in a layer ζ1 6 ζ 6 ζ2 parallel to the bottom.
Then the total strength of the along-slope current in this range is increased by the
amount Σ(ζ2)− Σ(ζ1) minus the amount of momentum carried away by the reflected
waves and turbulent vortices generated in the breaking region. In our case of an
obliquely incident wave propagating at critical inclination angle, the breaking first
occurs when the wave hits the bottom slope. Obviously, this results in the generation
of an along-slope current in the boundary region. If the wave flux of momentum (22)
is strong enough to compete with the boundary shear stress, the velocity V of the
current grows so that it becomes comparable to or even exceeds the along-slope trace
speed of the wave,

Ctr
y = ωk−1

y = Ri 1/2(kx + ky)
1/2k−1k−1

y = Ri 1/2k−1(sin γ)−1, (29)

at some distance ζc from the bottom. Then the mechanism of the critical layer
instability becomes effective. The wave breaking and, thus, momentum supply into
the mean current now occurs in some range around ζc. This leads to the growth of
V at ζ > ζc and to the continual shift of the position of ζc. As a result, we obtain
a progressively broadening zone of the along-slope flow between the bottom and the
wave breaking zone.

It should be stressed here that ζc is not necessarily the distance at which the exact
critical layer condition is fulfilled. As discussed in the next Section, the wave may
break even if the bulk velocity of the mean current is smaller than the trace speed.
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For definiteness, ζc will hereafter be considered as an approximate coordinate of the
midplane of the wave breaking layer.

We analyse the proposed scenario using the one-dimensional model (20). The
viscous decay (28) is neglected so that Σ is considered constant outside the breaking
zone. We also neglect the fluctuations of Σ(ζ, t) due to the turbulent eddies in the
breaking layer. It may be justified by saying that we study the ‘slow’ evolution on
the typical time scale of the growth of the mean current, which is much larger than
the typical eddy turnover time.

The boundary conditions are

V (0, t) = 0, V (∞, t) = 0, V (ζc(t), t) = τCtr
y , (30)

where τ is an arbitrary coefficient whose presence reflects both the fact that ζc may
differ from the exact location of the critical layer and that the wave can break down
at a ‘sub-critical’ value of V . This coefficient is presumably close to 1.

Another arbitrary coefficient 0 < β < 1 is used to account for the unknown part of
the momentum flux, which is not supplied to the mean current but is carried away by
the reflected waves and turbulent vortices. We multiply the wave flux of momentum
(22) by β and substitute

Σ̃ = βΣ (31)

into (20). An attempt to estimate τ and β using the results of simulations is made
in § 4.

Let us consider the situation when, initially, the distance between the critical layer
and the bottom grows faster than the thickness of the viscous bottom boundary layer
L(t) = (2Re−1t)1/2. At some moment of time,

ζc(t)� L(t)

and the viscous term in (20) is negligibly small everywhere but ζ < L(t). Further, it
is assumed that the wave breakdown occurs in a range ζc − δ/2 6 ζ 6 ζc + δ/2 and
that δ/2� ζc(t)− L(t).

No information is readily available on the details of the wave breaking process,
which determines the actual value of δ and the distribution of Σ̃(ζ, t) in the wave
breaking region. We assume that this process is time-independent on the slow time
scale. This implies that δ is a constant, whereas Σ̃ is a function of one variable

η = ζ − ζc(t).
At ζ > ζc + δ/2 we have Σ̃ = Σ̃0 = const. Together with the boundary condition at

ζ →∞, this gives

V (ζ, t) = 0 at ζ > ζc + δ/2. (32)

After passage of the critical layer, at ζ < ζc − δ/2, the wave does not exist, so Σ̃ = 0.
The solution satisfying the assumption of time-independent breaking process is

V (ζ, t) = Vmax = const at ζ < ζc − δ/2, ζ � L(t). (33)

Further we observe that the growth rate of the total strength of the current should
be equal to the drop of the momentum flux

Vmaxζ̇c = Σ̃0 = βΣ0, (34)

and, thus,

ζ̇c = const. (35)
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Figure 3. Typical solution of the model problem (20), (30).

The solution is illustrated in figure 3. The wave breaking layer moves from the wall
with a constant speed ζ̇c, leaving behind the mean current with the constant bulk
velocity Vmax. The constants can be defined if one knows the details of the process.
In particular, both Vmax < Ctr

y (shown in figure 3) and Vmax > Ctr
y are possible. The

former corresponds to the ‘sub-critical’ case τ < 1 when the wave breaks down where
mean current velocity substantially smaller than the trace speed. On the other hand,
one can imagine the situation where the current velocity is close to Ctr

y at ζ = ζc
so that the injection of momentum into the current in the lower part of the wave
breaking zone ζ < ζc can lead to Vmax > Ctr

y .
The identity (34) allows us to express both important characteristics of the mean

current in a simple form:

Vmax = τCtr
y , ζ̇c =

β

τ

Σ0

Ctr
y

. (36)

If we re-scale (36) using Ctr
y as the scale for velocity and ζ̇c, and assume τ and β to be

given constants we obtain a self-similar solution depending on one non-dimensional
parameter:

S ≡ Σ0

(Ctr
y )2

= Ri−1f(θ, α, γ), (37)

where

f = 2π2 sin3 γ sin θ(cos γ sin θ sin α+ cos θ cos α)

(sin2 θ − cos2 θ cos γ)2
. (38)

The same conclusion can be obtained if one considers the original system (20), (30)
and rescales the variables using Ctr

y as the velocity scale, ν(Ctr
y )−1 as the length scale,

and ν(Ctr
y )−2 as the time scale.

At given values of τ and β, the parameter S evaluates the non-dimensional speed
of the growth of the current ζ̇c, which is the main factor determining the current’s
viability in the real ocean flows. If, further, we fix the Richardson number, the
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potential of an oncoming wave to create along-slope current is expressed solely by
(38). Figure 4 shows f as a function of the oblique angle γ at different values of the
slope angle α and θ = π/2− α. The strongest mean currents are created by the wave
with oblique angle in the range between 40◦ and 80◦. No currents can be produced
by almost normal waves with γ → 0 or γ → π.

Another feature of the curves in figure 4 is the growth of f with the slope angle α.
This suggests that along-slope mean currents are more probable near the steeper
slopes typical of islands and seamounts than in the regions where the waves interact
with gently sloping oceanic shelves.

4. Numerical experiments
4.1. Procedure and parameters

Several numerical experiments are presented in this section. Their most important
parameters are given in tables 1 and 2. The slope angle α is 20◦ and the wave
inclination angle θ is 70◦ in all the experiments so that the case of critical reflection
is invariably considered.

Each experiment lasts many wave periods T = 2π/ω and consists of two principal
phases. During the first phase, which starts at t = 0 and ends at some t0 between
10T and 20T , the mean along-slope velocity 〈v〉 is subtracted from the velocity field
u after each time step. The purpose of this becomes clear if we recall the mechanisms
of the current generation through the transient effects and spatial viscous decay of
the wave discussed in § 3.2. We deliberately exclude these premature currents from
consideration because they may not have any counterparts in the real ocean flows of
interest, while contaminating the results of the experiments.

Several periods T after the start of the calculations, the wave reaches the bottom
and wave breaking starts, which is very similar to that described by Slinn & Riley
(1998a, 2001) for normally incident waves. This flow is calculated for several more
periods, with the purpose being to achieve a balance between the forcing and near-wall
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Case γ [◦] C Lξ × Ly × Lζ Nξ ×Ny ×Nζ k −Cgζ Ctr
y t0/T tend/T

1 71.6 5.2× 10−3 2× 2.6074× 10 64× 64× 300 7.43 −0.054 0.142 17.4 56.0
2 114.8 5.2× 10−3 5× 3.003× 10 128× 64× 300 6.74 −0.026 0.164 38.4 68.9
3 37.9 5.2× 10−3 1.375× 3.7648× 10 64× 128× 300 7.95 −0.068 0.205 10.2 24.4
4 71.6 3.7× 10−3 2× 2.6074× 10 64× 64× 300 7.43 −0.054 0.142 12.0 55.4

Table 1. Specification of the numerical experiments: oblique angles γ, forcing amplitude C , dimen-
sions of the computational domain, numerical resolution, wavenumber k, ζ-component of the group
velocity Cgζ , y-component of the trace speed Ctr

y , starting point of the mean current generation

t0/T (T is the wave period), total duration of the run tend/T .

Case A(ζ0, t0) A(0.5, t0) Re Ri
Σ(ζ0, t0)

(Ctr
y )2

Σ(0.5, t0)

(Ctr
y )2

V ∗max
Ctr
y

M H

1 4.7× 10−2 3.9× 10−2 1410 453 2.0× 10−2 1.4× 10−2 0.48 0.37± 0.03 0.53± 0.06
2 5.0× 10−2 3.7× 10−2 1500 400 7.4× 10−3 4.0× 10−3 0.22 0.42± 0.02 0.52± 0.01
3 5.5× 10−2 4.7× 10−2 1650 331 1.2× 10−2 8.6× 10−3 0.70 0.35± 0.04 0.56± 0.08
4 3.3× 10−2 2.8× 10−2 990 918 1.0× 10−2 7.3× 10−3 0.43 0.34± 0.03 0.56± 0.04

Table 2. Specification of the numerical experiments: maximum wave amplitude A(ζ0, t0), wave
amplitude A(0.5, t0) at ζ = 0.5 and t = t0, actual Reynolds and Richardson numbers calculated
using A(ζ0, t0) as the velocity scale, maximum values of normalized momentum flux (parameter S
of the model) at ζ = ζ0 and t = t0, normalized momentum flux at ζ = 0.5 and t = t0, time-averaged
normalized maximum velocity of mean along-slope current V ∗max/Ctr

y , mixing efficiency (41), heat gain
coefficient (42). The integration limits for V ∗max, M, and H are [t0 +6T , t0 +21T ], [t0 +4T , t0 +22T ],
[t0 + 10T , t0 + 35T ], and [t0 + 4T , t0 + 42T ] for Cases 1, 2, 3, and 4, respectively.

dissipation. At the end of the first phase of the experiment, at t = t0, the incident wave
train has a statistically steady distribution in the whole computational domain. An
illustration is given in figures 2(b, c), where the total wave energy and the momentum
flux averaged in the (ξ, y)-plane are shown as functions of ζ. Remarkably, the results
of the calculations are in excellent agreement with the decay law (28). This can be
considered as a verification of the closeness of the numerically generated wave to the
monochromatic solution (19).

In the course of the second phase of each experiment, starting at t = t0, limitless
generation of the mean along-slope current is allowed in the lower part of the
computational domain, for, approximately, ζ < 0.4Lζ . We examine the flow in this
part only, the upper part serving exclusively for the generation of oncoming wave
packets. Note that no large waste of computational resources is associated with such
a partition because the grid points are clustered at small ζ.

4.2. Example of current generation

In this section we give a detailed description to the process of mean current generation
due to the breaking of an obliquely incident wave. The description is based on the
results of one numerical experiment denoted as Case 1 in tables 1 and 2. The
experiment is typical in the sense that the principal features of the flow found in
this run are repeatedly reproduced, apart from quantitative variations, in all other
experiments.

The evolution of the spatial structure of the flow is illustrated in figure 5. Vertical
cross-sections at y = Ly/2 are shown including contours of total density (7) (a–c),
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along-slope velocity component v (d–f), and viscous dissipation rate ε (g–i). The
direction of wave propagation (group velocity) is downward, to the right, and into
the page in this experiment.

Figures 5(a), 5(d), and 5(g) in the left-hand column show the flow at t = t0, i.e.
the flow calculated with the mean along-slope current artificially removed. It can be
seen that the wave breakdown occurs in a similar fashion to the simulations with
normally incident waves (Slinn & Riley 1998a, 2001). The wave breaks at the bottom
slope and creates a turbulent boundary layer. The outstanding characteristic of this
flow, found by Slinn & Riley to be typical for critical reflection at shallow slopes with
α 6 20◦, is a density front moving up-slope. The front speed is equal to the up-slope
component of the phase velocity so that the front location always corresponds to a
certain phase of the oncoming wave. An important distinction in the oblique case
from the cases with normal incidence is that the density front is now accompanied
by a strong localized along-slope current (the bright red spot on figure 5d).

The plots in the middle and right-hand columns of figure 5 show the flow evolution
during the second phase of the experiment, i.e. when the mean along-slope current
is allowed to exist. The plots clearly demonstrate that the scenario described in § 3.3
is, indeed, realised in the simulations. A strong along-slope current develops near
the bottom and expands with time (see figures 5e and 5f). The maximum velocity
of this current slightly exceeds the along-slope trace speed Ctr

y . However, unlike
the simplified theoretical model, the velocity is not constant across the current. A
maximum is achieved at the upper boundary, the flow below being considerably
slower, with velocity ranging between 0.1 and 0.7 of the trace speed. It can be seen
in figures 5(e, f) that the current is subject to wave-like inhomogeneity, obviously the
result of penetration of the oncoming wave.

Further information on the spatial structure of the flow can be found in figures 6
and 7 where two-dimensional projections of the velocity field on different cross-
sections of the domain are shown. In particular, it can be seen that the along-slope
current occupies the whole domain in the ξ- and y-directions.

The plots of along-slope velocity in figures 5(e, f) and 6 demonstrate the presence
of a well-defined critical layer, which is approximately parallel to the bottom slope
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and located at the upper boundary of the along-slope current. Wave breaking occurs
at this layer. It can be seen in the dissipation plots in figures 5(h) and 4(i) that the
zone of turbulent motion, in which the intensive dissipation is characteristic, moves
together with the critical layer. As the density plots in figures 5(b) and 5(c) show,
intensive mixing occurs at the critical layer. Below this layer, vertical stratification is
re-established.

To analyse the evolution of the mean current we calculated the flow quantities
averaged in the plane parallel to the slope. Particular attention was given to the mean
along-slope velocity V (ζ, t), normal flux of momentum Σ(ζ, t), and the kinetic and
potential energies KE(ζ, t), PE(ζ, t).

Typical snapshots are shown in figure 8. It can be seen that the mean velocity profiles
are qualitatively similar to the model profile in figure 3. They consist of a viscous
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boundary layer at the bottom, the layer at the top where the current is generated,
and the region of approximately constant bulk velocity between them. Note that the
flux of momentum decreases to nearly zero through the current generation region.

A note is in order regarding the averaged velocity V in the current. It can be seen
in figure 8(a) that it does not exceed 0.5Ctr

y even if, as demonstrated in figure 5(e, f),
maximum along-slope velocity is about Ctr

y . The reason is the wave penetration into
the current that creates zones of reduced velocity as well as other zones of enhanced
velocity where wave penetration adds constructively. Since the wave breaking is
the only source of along-slope momentum in the flow, we may assume that the
mean velocity should remain considerably smaller than Ctr

y at later stages of current
evolution when the current grows broad in comparison to λζ and all the wave-like
inhomogeneities are smoothed by dissipation.

One more peculiarity of the mean current profiles obtained in the simulations is
that V (ζ, t) > 0 even far above the critical layer (see figure 8a). This is, obviously,
due to the divergence of the flux of momentum caused by the viscous decay of the
incident wave (see § 3.2). The viscously generated current was found to have only a
weak influence on the properties of the wave propagating through it as long as the
current velocity was considerably smaller than Ctr

y . In each numerical experiment, the
calculations were stopped when this velocity became comparable to Ctr

y at some point
and a second critical layer developed.

Figure 8(b) shows the dramatic impact of the wave breakdown at the critical
layer interface and mean current generation on the vertical energy distribution.
In the oncoming wave, KE(ζ, t) and PE(ζ, t) are virtually equipartitioned. This is
one more confirmation of the closeness of our numerically generated wave to the
monochromatic solution. The region around the critical layer is characterized by
the drastic increase of both the potential and kinetic energy, indicative of intensive
turbulent mixing created by wave breakdown. Below the critical layer, where the
vertical stratification is essentially restored, the potential energy decreases. The kinetic
energy density is now dominated by the energy of the mean current and remains
considerably larger than in the incident wave.

The profiles shown in figure 8 may be used to estimate the mean thickness of the
turbulent layer in which wave breaking and current generation occur. The layer can
be defined as the region where the velocity and kinetic energy of the mean current
grow from the viscously generated values to the maximum values. The thickness
of this layer varied considerably in the numerical experiments. Depending on wave
parameters and time, values between 0.5λζ and λζ were found.

Another way to describe the geometry of the wave breaking zone is to estimate
the thickness and location of the turbulent mixing layer characterized by increased
potential energy density PE(ζ, t). In the calculations, the mixing layer is typically
larger (thickness between 0.7λζ and 1.1λζ) than the turbulent layer defined through
the increase in kinetic energy. As illustrated in figure 8(b), large-amplitude density
perturbations associated with increased potential energy penetrate substantially into
the mean current or persist from earlier wave breaking events.

Figure 9(a) shows the terms of the total energy balance equation, which is the sum
of (17) and (18). Several important conclusions can be drawn concerning the validity
of the simulations. First, the work input by the wave forcing, W , is statistically steady
with very weak oscillations. Further, the energy flux through the upper boundary of
the computational domain, Sf , is negligibly small in the calculations. Very important
also is that the rate of dissipation in the resolved scales, ε + χ, remains much larger
than the rate of dissipation by the subgrid-scale filter, F . Therefore, the filter accounts
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Figure 9. Calculations in Case 1. (a) Evolution of terms in total energy equation (17)+(18): work
input W , time derivative of the energy Et, dissipation and diffusion rates in the resolved scales ε+χ
and due to the filter F , flux of energy into sponge layer Sf . (b) Volume integrals of kinetic (KE),
potential (PE), and total (TE) energy and the buoyancy flux (Bf).

for a small part of the total dissipation and can be considered to have only a slight
influence on the dynamics of large scales of the flow.

Figure 9(b) shows how the partition of the volume-integrated flow energy changes
with time. The buoyancy flux, Bf , departs from zero when the leading edge of the wave
reaches the bottom and continually grows in amplitude afterwards, indicating a net
transfer of wave potential energy to kinetic energy. Similar behaviour was observed in
the simulations of normally incident waves by Slinn & Riley (2001). The new feature
of our energy plot is the disparity between the kinetic and potential energies starting
exactly at the moment t = t0 = 17.4T when the mean along-slope current is allowed
to exist. The excess kinetic energy represents the energy of the along-slope current.

4.3. Effect of wave parameters

Several numerical experiments were performed to investigate how the process of along-
slope current generation changes depending on the parameters of the oncoming wave.
Specifications of the experiments are given in tables 1 and 2. For this first study of
the phenomenon we restrict consideration to the bottom slope α = 20◦. The wave
inclination to the horizontal is θ = 70◦. The effect of the oblique angle is examined
in Cases 1, 2, and 3. The influence of the wave amplitude A can be seen from the
comparison between Cases 1 and 4.

A point has to be made regarding the fact that A cannot be defined a priori in
the calculations. Instead, we define the forcing amplitude C (see (12)). The wave
amplitude is estimated in the course of simulations according to

A0 = [2(KE(ζ0, t0) + PE(ζ0, t0))]
1/2. (39)

Here KE(ζ0, t0) and PE(ζ0, t0) are the ξ, y-averaged profiles of the kinetic and po-
tential energy computed at t = t0, i.e. at the moment when the second phase of the
experiment begins with releasing the constraint on the mean along-slope current in
the lower portion of the computational domain. The coordinate ζ0 is determined as
that giving the maximum of KE(ζ, t) and PE(ζ, t). In all the experiments, the value
ζ0 = 5.752 was obtained. Thus defined, A0 virtually does not change with time at
t > t0 and is the amplitude of the wave immediately after emerging from the forcing



Along-slope current generation by internal waves 255

1.6

1.2

0.8

0.4

0

fc

10 20 30 40

0.16

0.12

0.08

0.04

0 10 20 30 40

V m
ax

(t – t0)/T

(a) (b)3

1

2

4

1

2
3

4

(t – t0)/T

Figure 10. Along-slope current generation in numerical experiments 1, 2, 3, and 4: (a) distance ζc(t)
of the mid-plane of the wave-breaking layer from the bottom; (b) maximum velocity Vmax of the
mean current.

region. The actual amplitude of the wave interacting with the critical layer is reduced
due to viscous decay. For comparison, table 2 gives the values of A0 and the values of
A(ζ = 0.5, t0) computed according to (27). A similar procedure is applied to calculate
the maximum values Σ(ζ0, t0) and Σ(ζ = 0.5, t0) shown in table 2.

In the course of the experiments, two principal parameters of the mean along-
slope current are evaluated: the maximum current velocity Vmax and the mid-plane
of the wave breaking layer ζc(t). For ζc(t) we use the approximation whereby the
distance from the wall to the level where the mean current velocity V (ζ, t) is equal to
Vmax/2. The results are summarized in figure 10. It can be seen that the simulations
are in agreement with the model of § 3.3. After the initial period, where the wave
breaks at the bottom, the current generation occurs in a fashion similar to that
described by (33) and (35). The maximum velocity remains approximately constant.
The deviation of ζc(t) curves from a linear dependence has the obvious explanation
that the actual value of the momentum flux Σ(ζ, t) is not a constant but grows with
ζ in the simulations, which implies a growing slope ζ̇c.

Time-averaged values of Vmax normalized by the along-slope trace speed Ctr
y are

given in table 2. The current velocity is considerably smaller than the trace speed, the
ratios V ∗max/Ctr

y ranging between 0.22 and 0.70. Taking into account our definition of
the midplane ζc(t) of the turbulent layer, this leads to the estimate 0.2 < τ < 0.7 for
the parameter τ used in (30) to formulate the simplified model

The results shown in figure 10 allow us to draw preliminary conclusions concerning
the influence of γ and A on the along-slope current. Comparing curves 1 and 4 we
see that two waves of the same spatial orientation but different amplitude produce
mean currents of almost equal maximum velocity (see figure 10b). The main effect of
the difference in amplitude and, thus, in the flux of momentum Σ is on the growth
rate of the current zone (slope of the curves ζc(t) in figure 10a).

The comparison between Cases 1, 2, and 3 with different oblique angles is com-
plicated by the fact that the actual wave amplitude A is also slightly different in
these cases even though the forcing amplitude C is the same. One reason is that the
initial amplitudes A0 produced by the forcing (12) are slightly different. Moreover,
in accordance with (28), changing wavenumber k and group velocity Cgζ yield dif-
ferent viscous decay at the same ζ. Nevertheless, some conclusions can be drawn. In
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Figure 11. Results of the numerical experiments 1 to 4: part of the flux of momentum transferred
into the mean current estimated according to (40).

particular, one can see that the waves with smaller oblique angles tend to produce
mean currents of larger velocity.

It is pertinent to point out here that even if Σ is approximately equal in Cases 1, 2,
and 3, the parameter S = Σ/(Ctr

y )2, which defines the current generation according to
our simplified model, varies considerably between the cases. The estimated values of
S are given in table 2 and its dependence on the oblique angle was discussed in § 3.3.

Figure 11 presents an attempt to estimate the unknown coefficient β used in this
simplified model to account for the portion of the wave flux of momentum injected
into the mean current (see (34)). We assume for a moment that (34) holds in the
simulations and that the momentum flux Σ depends on ζ as (28), Σ(ζ0) being the
maximum value given in table 2. The speed of the critical layer ζ̇c cannot be reliably
estimated in the calculations because of violent fluctuations caused by large turbulent
eddies in the wave breaking layer. This obstacle is circumvented by assuming that

ζc = ζ̇c(t− t0)
and substituting ζc(t− t0)−1 for ζ̇c in (34). As a result we obtain

β ≈ ζc(t− t0)−1VmaxΣ
−1(ζ). (40)

The coefficient (40) is plotted in figure 11 as a function of time. The time-averaged
values of Vmax given in table 2 are used. One can see that β can take, at least,
values between 0.2 and 0.8. Its time-dependence, apart from the initial stage of each
experiment, is rather weak. On the other hand, a change in the oblique angle or wave
amplitude leads to considerable variations of β.

The last aspect of the computed results to be discussed here is the mixing efficiency
of the turbulent flow created due to the wave breaking. Following Slinn & Riley
(2001) we define the mixing efficiency as

M ≡
−
∫ t2

t1

[χ̄+ FPE]dt∫ t2

t1

[WKE +WPE]dt

, (41)

which is the portion of the wave energy going to irreversible mixing of the density
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field. The time integration in (41) is over the period [t1, t2] of the flow evolution,
where the initial transient processes are finished and a well-established critical layer
moves upwards. In the same manner, we define the heat gain coefficient

H ≡
−
∫ t2

t1

[ε̄+ FKE]dt∫ t2

t1

[WKE +WPE]dt

, (42)

which gives the portion of energy dissipated as heat. There is also a small portion of
energy which is radiated by reflected waves or induced mean currents. The values of
M and H are given in table 2 together with the tolerance limits.

In the simulation of bottom turbulent layers produced by breaking normally
incident waves, Slinn & Riley (2001) found that the ratios (41) and (42) quickly
achieve statistically steady values which do not change with further increase of t2.
Typically, the values were about 0.35 for M and 0.55 for H . Examining the data in
table 2 shows that the mixing efficiency and heat gain are approximately the same.
However, a weak continual change with t2 was detected in all the experiments. Among
other reasons, this can be related to the change of the amplitude of the oncoming
wave at the critical layer, which occurs as the critical layer moves upwards.

5. Possibility of current generation in the ocean
The numerical simulations discussed in this paper are performed at Reynolds

numbers which are many orders of magnitude smaller than the Reynolds number
of internal waves in the ocean. Moreover, we consider the case of a relatively steep
slope α = 20◦, whereas typical values on the oceanic shelf are between 2◦ and 5◦. The
reasons for these inconsistencies are related to the present computational limitations
of numerical simulations. Both an increase in the Reynolds number and decrease in
the slope would require unacceptable growth of the number of grid nodes (in all three
dimensions in the former case and in the ξ-direction in the latter).

Nevertheless, we can use the model predictions obtained in § 3.3 and confirmed
by the numerical experiments to consider how the mechanism of along-slope current
generation described in this paper could apply in more realistic ocean flows. From
the whole spectrum of internal waves existing in the ocean we shall choose just
one monochromatic wave having the critical inclination angle to the horizontal and
estimate the along-slope current that can be generated by the breakdown of this wave.
It should be emphasized that the wave is assumed to persist for long time, sufficient
for the thickness of the mean current to become about a wavelength or larger so that
the current can withstand the impact of oncoming waves.

As an example, we consider a wave with the moderate wavelength λ = 103 m
and the amplitude (maximum velocity) A = 0.2 m s−1. The buoyancy frequency is
N = 2× 10−3s−1 and the oblique angle is γ = 71.6◦. Formulas (23) and (29) are used
to calculate the radiation stress Σ0 and the trace speed Ctr

y .
Table 3 shows the results for the slopes α = 2◦, 5◦, and 20◦. The angle of wave

propagation to the horizontal is critical, θ = 90◦ − α. The values of the parameter S
are of the same order of magnitude as in our computations (cf. table 2). This suggests
that the generation of along-slope currents in the ocean may occur in a manner
similar to that observed in the numerical simulations.

Based on the averaged values of Vmax/C
tr
y in table 2 it is reasonable to assume
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α (deg.) Σ0 [m2 s−2] Ctr
y [m s−1] S Vmax [m s−1] ζ̇c [m s−1] T [s] T ζ̇c [m]

2 8.70× 10−4 0.335 7.73× 10−3 0.168 5.19× 10−3 9.0× 104 233
5 2.16× 10−3 0.335 1.92× 10−2 0.168 1.29× 10−2 3.6× 104 232

20 7.54× 10−3 0.335 6.70× 10−2 0.168 4.50× 10−2 9.2× 103 206

Table 3. Model estimates for a sample oceanic internal wave propagating at oblique angle γ = 71.6◦:
slope α, flux of along-slope momentum Σ0, along-slope trace speed Ctr

y , model parameter S , inferred
velocity of the mean current Vmax = Ctr

y /2, corresponding speed of critical layer ζ̇c, wave period T ,
distance covered by critical layer during one wave period.

that, in the ocean, the velocity of the mean current is about 0.5Ctr
y . This allows us

to estimate the speed of the critical layer ζ̇c as the ratio of Σ0 to Vmax. The data in
table 3 show rapid expansion of the mean current. At all three values of the slope
angle α, the current zone covers the wavelength λ in several wave periods T .

It is interesting to note that, at given wavelength and oblique angle, the trace
speed Ctr

y and, thus, the current velocity Vmax do not depend on the angle θ of
wave propagation. Moreover, according to the expressions for the wave period T =
2π/N cos θ and the momentum flux (22), the dominant term in the product T ζ̇c is
proportional to cos2 α at small α. The result is in table 3. The distance covered by the
critical layer during one wave period depends only slightly on the slope angle α.

To summarize, if isolated wave packets with a dominant frequency and direction-
ality arrive at a sloping boundary the approximate dynamics we have explored here
might be produced. The critical reflection of internal waves on shallow slopes could
generate intensive broad along-slope currents in the ocean.

6. Discussion and concluding remarks
The numerical experiments presented in this paper demonstrate that obliquely

incident internal waves breaking at a bottom slope may generate a flow which is
significantly different from that obtained previously in the case of normal incidence.
The reason for this is the flux of unbalanced along-slope momentum associated with
the incident wave. As the wave breaks, the momentum accumulated in the boundary
region gives rise to an along-slope current. As soon as the mean along-slope velocity
approaches the wave trace speed in the same direction, wave breaking occurs at the
external boundary of the current, being the result of a critical layer interaction. This
leads to the expansion of the current zone and outward drift of the wave breaking
layer. In an idealized case of a steady monochromatic wave in a semi-infinite domain
from a source at infinity one would expect an infinitely expanding current.

The numerical results are in agreement with a simple theoretical model based on the
law of conservation of momentum and the concept of radiation stress. In particular,
the experiments support the model’s conclusions that the critical layer moves with a
constant speed and that the mean velocity of the along-slope current does not change
with distance from the bottom outside the viscous boundary layer.

The mechanism of along-slope current generation is, certainly, only one of many
possible mechanisms associated with the propagation and interaction of internal
waves. Keeping in mind the complexity of the problem, in this paper we focused
on just one aspect. Such important questions as the Earth’s rotation, wave–wave
interaction near the critical layer and interaction between the mean current and other
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Figure 12. Calculations with γ = 72.6◦, C = 5.2× 10−3, and Lζ = 6λζ: ——, Lξ = λξ and Ly = λy;
– – –, Lξ = 2λξ and Ly = λy; – · – · –, Lξ = λξ and Ly = 2λy; (a) distance ζc(t) of the mid-plane of
the wave-breaking layer from the bottom; (b) maximum velocity Vmax of the mean current.

waves besides the one causing the current generation are planned for future studies.
The ultimate goal should be the understanding of the realistic situation where multiple
wave packets corresponding to the whole Garrett–Munk spectrum of oceanic internal
waves (Garrett & Munk 1979) are present. One important feature of this situation
may be that the mean current V (ζ, t) initially created by a wave or waves propagating
at the critical angle θ can then receive energy from all other waves satisfying the
critical level condition at some ζ.

This work was supported by the National Science Foundation, Program in Physical
Oceanography (grant # 9906941). Partial support was provided by the Office of Naval
Research (grant # N00014-99-0065). The authors thank Chris Garrett, Steve Thorpe,
and the referees for careful reading of the manuscript and useful comments.

7. Appendix: Accuracy of numerical presentation
In numerical simulations of flows like that considered in the paper, the question

of accuracy of the numerical experiments arises at both ends of the length scale
spectrum. The motions on small, dissipative scales have to be resolved or accounted
for by a relevant subgrid-scale model. On the other hand, in the situation when the
flow is driven by large-scale turbulent eddies and the computational domain presents
only a part of the real flow domain, the right choice of the size of computational
domain becomes important. In our case this especially concerns the dimensions Lξ
and Ly parallel to the bottom slope.

The presentation of small-scale motions has already been discussed in § 4.2 where
the terms of the energy balance equation were calculated (see figure 9a). The rate of
dissipation and diffusion in the numerically resolved scales, ε + χ, was found to be
much larger than the rate of dissipation and diffusion F produced by the subgrid-scale
filter. Therefore, at the Reynolds number used in the numerical experiments, a specific
type of subgrid-scale model may affect only slightly the dynamics of large scales.

In all our simulations, the horizontal dimensions Lξ and Ly were taken equal to the
wavelengths of the oncoming wave, λξ and λy . This is a potentially dangerous choice
since, as soon as the largest turbulent eddy in the breaking layer becomes comparable
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in size to λξ or λy , the periodic boundary conditions impose a distorting effect on the
flow.

In order to check the influence of Lξ and Ly we performed three additional
experiments, the results of which are illustrated in figure 12. The oblique angle γ and
the forcing amplitude C were the same as in Case 1 of the main series of simulations. A
smaller computational domain with Lζ = 6λζ was used, so that the vertical resolution
could be reduced to Nζ = 200. Different combinations of the horizontal dimensions
were tried: Lξ = λξ and Ly = λy , Lξ = 2λξ and Ly = λy , Lξ = λξ and Ly = 2λy . One
can see from figure 12 that the values of two flow parameters most important in our
study, the coordinate of the midplane of wave breaking layer, ζc(t), and the maximum
velocity of the current, Vmax, are very close in all three experiments. The conclusion is
that the choice of Lξ = λξ and Ly = λy does not have a considerable impact on the
generation of the mean current.
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